Assignment 2

Joe Puccio

September 18, 2014

Collaborators: Sana Imam, Ryan Allan.
24

a) (3,4),(1,5),(2,5),(3,5), (4,5)

b) The set array < n,n—1,n—2,...,2,1 >. It has L;kl) inversions.

¢) Assume that we are swapping elements with their neighbors in the insertion sort, rather than just using
a temporary variable (so that each inversion in the array would necessitate one swap). There’s a positive
correlation between the number of inversions in the input array and the run-time of an insertion sort on the
array, because the inner-loop must execute once for every inversion in the current subproblem. That is, the
more inversions there are in the input array, the longer the run-time of the sort. More formally, the inner
loop must execute I times where I is the number of inversions, and the outer loop must execute n times
where n is the number of elements in the array, so the run time is (I + n), which means that the run time
increases as the number of inversions increases.

5.2-5 Given ¢, j indices of the array where ¢ < j, let’s let C; ; be an indicator variable for the event that
(¢,7) is an inversion. This means that the number of inversions in the array is ¥;;C;;. Now, we know that
for any given pair, the chance that the pair is inverted is 1/2 because we’re given that the array is of distinct

numbers. This means that the expected value of a given C;; = 1/2, and because we know that there are

n(n—1)
2

tobe 1/24+1/2+1/2... w times, so we may simply multiply the two to get that the expected value is

n(n—1
(n-1)

pairs (by the sum of 1,2..n — 2, n — 1), we know that overall expected number of inversions is going

5.3-3 No, the code does not produce a uniform random permutation. For each iteration of the loop, a
choice of what to swap the element at ¢ is made, where the chosen index may be from 1,...,n, where each
element is equally probable. Because this loop cycles through n times, we know that the total number of
possible ways of swapping is n™, because as mentioned, each iteration had n choices to swap with. But, we
know that the total number of unigque permutations (that these possible ways of swapping may result in) is
n!. We know our ways of swapping don’t all result in a unique permutation, so let’s write the probability that
a given permutation occurs in our algorithm as k/n™ where k is an integer dependent on the permutation.
So if the possibilities are to be uniformly distributed, we must have it that k/n™ = 1/n!, which may be
rewritten as n™ = kn!. k must be an integer because it essentially represents the number of ways a given
unique permutation can be achieved. But, in general, n™ is not evenly divisible by n!, so k cannot be assured
to be an integer. Thus, the code does not produce a uniform random permutation.

5.3-5 Let’s approach this problem intuitively. When generating the first element to be put in P, there’s a

0/n3 chance that our choice will be non-unique (that is, will collide with a previously chosen element). This
is obvious because at that point, there are no other elements in the array. For our second element, there’s
a 1/n® chance that our choice will be non-unique, because we could collide with our one existing element in
the array. For our third, there’s a 2/n® chance, because we could collide with our first element or second

element. We see that this pattern continues all the way up to n, where the chance that the nth element
is non-unique is ”7;31. Because each of these events are independent, the chance that any of them occurs is
the sum of their individual probabilities. Because their denominator is the same and their numerators are
. . . . n(n=1) 1 . : : 1 1
integers ranging from 1,...,n — 1, we may write their sum as ——5— - -5 which we may simplify to 5- — 5.
So, this is the probability that there is a collision, but because we’re considering the chance that there is no
collision, we take the complement of this number, which is 1 — (ﬁ — #) =1- % + ﬁ7 and we know that

this quantity is > 1 —1/n. So we have shown that the probability that there are no collision is > 1 —1/n. O

